

4.5V~100V, 2A, Synchronous Step-down Converter

1 Features

- 4.5V to 100V Wide Operational Range
- Output Current Capability: 2A
- Integrated High Side Power MOS with 400mΩ Low Resistance
- Integrated Low Side Power MOS with 120mΩ Low Resistance
- Constant-On-Time Control
- Low Quiescent: 240μA
- Low Input Current at Off-state: 4µA
- Programmable Switching Frequency from 300kHz to 800kHz
- FPWM/PFM mode selectable
- Built-in Pull-up Current at EN Pin
- Internal 2ms Soft Start
- Integrated BST Charge Circuit
- Low Drop Out Mode Support 97% Duty Cycle
- Pre-bias Start-up
- Available in ESOP8 package

2 Applications

- · Battery powered tools
- E-bike powers, E-motors
- · Industry application

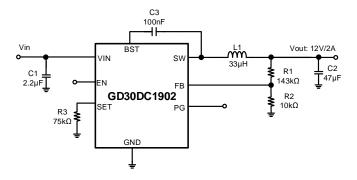
3 Description

The GD30DC1902 is a 100V, 2A synchronous stepdown converter featuring integrated high-side and lowside MOSFETs. Utilizing advanced constant-on-time (COT) control, it offers a compact solution size with excellent load transient performance.

The integrated BST charging circuit reduces both cost and solution size. Its extended high-duty cycle makes it ideal for applications requiring a low drop-out feature. 240µA quiescent current saves the power, while its low off-current is particularly suitable for battery-powered applications.

The GD30DC1902 supports FCCM/PFM mode selection. FCCM mode ensures continuous conduction operation across all load ranges, enabling compatibility with isolated buck converter applications.

It includes built-in protection features such as cycle-bycycle current limit, hiccup mode SCP, output overvoltage protection (OVP), feedback (FB) open protection, and thermal shutdown for excessive power dissipation.

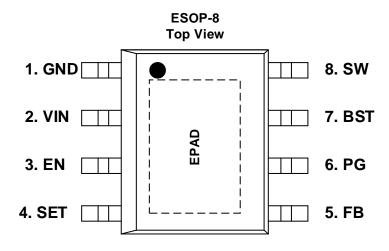

The GD30DC1902 is available in a compact ESOP8 package, making it a space-efficient solution.

Device Information¹

PART NUMBER	PACKAGE	BODY SIZE (NOM)
GD30DC1902	ESOP8	4.9mm x 3.9mm

1. For packaging details, see Package Information section.

Simplified Application Schematic


Table of Contents

1	Feat	tures	1
2	App	lications	1
3	Des	cription	1
Tak	le of	Contents	2
4	Devi	ice Overview	3
	4.1	Pinout and Pin Assignment	3
	4.2	Pin Description	3
5	Para	ameter Information	4
	5.1	Absolute Maximum Ratings	4
	5.2	Recommended Operation Conditions	4
	5.3	Electrical Sensitivity	4
	5.4	Thermal Resistance	4
	5.5	Electrical Characteristics	5
6	Fund	ctional Description	7
	6.1	Block Diagram	7
	6.2	Operation	7
7	App	lication Information	11
	7.1	Typical Application Circuit	11
	7.2	Detailed Design Description	11
	7.3	Typical Application Curves	13
8	Layo	out Guidelines and Example	17
9	Pacl	kage Information	18
	9.1	Outline Dimensions	18
10	Orde	ering Information	20
11	Revi	ision History	21

4 Device Overview

4.1 Pinout and Pin Assignment

4.2 Pin Description

PIN NU	IMBER	PIN	EUNCTION	
NAME	ESOP8	TYPE ¹	FUNCTION	
GND	1	G	Ground Pin. Chip's GND connection. Connect to the ground of the system.	
VIN 2		Р	Power supply. Placed input capacitors as close as possible from VIN to GND	
VIIN	2	Р	to avoid noise influence.	
EN 3		ı	Enable . Pull high to enable the output. and pull low to disables the device and	
EN	3	ı	turns it into shutdown. Don't leave this pin floating.	
SET	4	1	Set Pin. Frequency and Mode selection.	
FB 5		,	Feedback. Feedback pin for the internal control loop. Connect this pin to the	
ГВ	5	'	external feedback divider from VOUT to GND.	
PG	6	0	Power Good Indicator. Open drain structure. Need connect to an external	
FG	0	O	voltage source through a pull-up resistor(e.g. $100k\Omega$). Floating it if not used.	
BST	OCT 7	т 7	0	Bootstrap . Connect a high-quality BST capacitor between SW and BST to
ВЗТ	001 /		form a floating supply across the high-side switch driver.	
SW	8	0	Switch output. Switching node of power stage. Connected to the internal	
300		0	MOSFET switches and inductor terminal.	
EPAD 9		G	Exposed Pad. Connect the exposed pad to the PCB GND plane to ensure	
LIAD	3	9	optimal thermal efficiency.	

^{1.} I = Input, O = Output, P = Power, G = Ground.

5 Parameter Information

5.1 Absolute Maximum Ratings

Exceeding the operating temperature range(unless otherwise noted)1

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{IN}	Power supply	-0.3	105	V
Vsw	Switching node of power stage	-0.3	105	V
$V_{BST} ext{-}V_{SW}$	Bootstrap pin for high side power MOS driving.		6	V
I _{EN}	Max Input current into EN pin		100	μA
All Other Pins		-0.3	6	μΑ
TJ	Junction temperature	-40	150	°C
T _{STG}	Storage temperature	-65	150	°C

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note
that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating
conditions for extended periods may affect device reliability.

5.2 Recommended Operation Conditions

SYMBOL ^{1,2}	PARAMETER	MIN	TYP	MAX	UNIT
V _{IN}	Power supply pin	4.5		100	٧
V _{OUT}	Output voltage			28	V
I _{OUT}	Continues Output current	0		2	Α
TJ	Junction temperature	-40		125	°C

^{1.} The device is not guaranteed to function outside of its operating conditions.

5.3 Electrical Sensitivity

SYMBOL	SYMBOL CONDITIONS		UNIT
V _{ESD(HBM)}	Human-body model (HBM), ANSI/ESDA/JEDEC JS-001-2017 ¹	±2000	V
V _{ESD(CDM)}	Charge-device model (CDM), ANSI/ESDA/JEDEC JS-002-2022 ²	±500	V

^{1.} JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Resistance

SYMBOL	CONDITIONS	PACKAGE	VALUE	UNIT
Θ _{JA} Junction to ambient thermal resistance		ESOP8	48	°C/W
ΘJC(TOP)	Θ _{JC(TOP)} Junction to case (top) thermal resistance		52	°C/W
Θ _{JC(BOT)} Junction to case (bottom) thermal resistance		ESOP8	2.3	°C/W

^{1.} Thermal characteristics are based on simulation, and meet JEDEC document JESD51-7.

^{2.} Refer to the Application Information section for further information.

^{2.} JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.5 Electrical Characteristics

 V_{IN} = 60V and T_J = 25°C, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input UVLC	and Quiescent Current		•			
VIN _{UVR}	VIN UVLO rising threshold			4.3		V
VIN _{UVF}	VIN UVLO falling threshold			4		V
VIN _{UV_hys}	VIN UVLO hysteresis			0.3		V
Is	Shutdown supply current	EN=0V		4		μΑ
IQ	Quiescent supply current	FB=0.82V		240		μΑ
EN SECTIO	ON .					1
V _{EN_R}	Enable rising threshold			1.2		V
V _{EN_F}	Enable falling threshold			1		V
		V _{EN} =L		1		
IEN_PULL_UP	Enable pull up current	V _{EN} =H		4.5		μA
V _{EN_CLAMP}	EN clamp voltage	EN voltage at 100µA current		6		V
FEEDBACK	K SECTION		I			1
V _{FB}	Feedback voltage		0.768	0.78	0.792	V
\ /	Feedback voltage under voltage			00		\/
V_{FB_UV}	threshold			90		mV
POWERST	AGE SECTION					•
Rhson	High Side MOS ON resistance	BST-SW=5V		400		mΩ
R _{LSON}	Low side MOS ON resistance			120		mΩ
LKG _{HS}	High-side leakage	V _{EN} = 0V, V _{SW} = 0V			1	μA
Current lim	it SECTION					•
I _{LIMIT_HS}	HS current limit threshold			3		Α
SOFT STAF	RT SECTION	L				1
Tss	Soft-start time	V _{FB} from 10% to 90%		2		ms
Frequency	SECTION					1
		SET Pin short to GND		300		
	FPWM Mode Switching	R _{SET} = 18.7K		500		
_	Frequency	R _{SET} = 37.4K		800		
F _{SW}		R _{SET} = 75K		300		KHz
	PFM Mode Switching	R _{SET} = 150K		500		1
	Frequency	SET Pin Float		800		
T _{ON_MIN}	Min On pulse ¹			120		ns
Ton_max	Max On pulse			10		μs
Toff_min	Min Off time ¹			350		ns
Power Good	•	1	1			•

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
	FB falling			87		%
V _{PG_UV}	FB rising			93		%
\/	FB falling			106		%
V _{PG_OV}	FB rising			112		%
R _{PG_ON}		Sink 3mA		55		Ω
T _{PG_DELAY}	PG falling delay time			12		μs
OVER TEM	IP SECTION					
T	Over temperature protection			140		°C
T _{OTP_R}	rising threshold ¹			140		
T	Over temperature protection			120		°C
T _{OTP_F}	falling threshold ¹			120		

^{1.} Guaranteed by design and engineering sample characterization.

6 Functional Description

6.1 Block Diagram

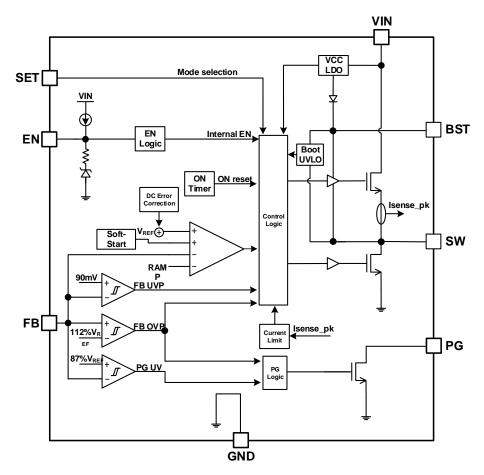


Figure 1 GD30DC1902 Functional Block Diagram

6.2 Operation

6.2.1 COT control loop operation

The GD30DC1902 is a fully integrated synchronous step-down switch-mode converter. It utilizes constant-on-time (COT) control to achieve fast transient response and simplify loop stabilization. At the start of each cycle, the high-side MOSFET (HS-FET) is activated when the feedback voltage (V_{FB}) falls below the reference voltage (V_{REF}), signaling that the output voltage is insufficient. The on-time duration is determined by both the input and output voltages, ensuring relatively stable switching frequency across the input voltage range. After the on period elapses, the HS-FET is turned off. The HS-FET is turned on again when VFB drops below VREF. Through this repetitive process, the converter regulates the output voltage.

The integrated low-side MOSFET (LS-FET) activates when the HS-FET is off, minimizing conduction losses. If both the HS-FET and LS-FET are simultaneously on, it creates a short circuit between the V_{IN} and GND, referred to as shoot-through. To prevent this, an internal dead time (DT) is employed between the transitions of HS-FET turning off and LS-FET turning on, or LS-FET turning off and HS-FET turning on.

In FPWM (Forced Pulse Width Modulation) mode, the LS-FET remains on continuously until the next HS-FET pulse arrives. Conversely, in PFM (Pulse Frequency Modulation) mode, the LS-FET switches off when the inductor current drops to zero, causing the IC to enter a hi-z state until the next HS-FET pulse arrives. For detailed operational instructions, refer to the section below.

6.2.2 Light Load operation

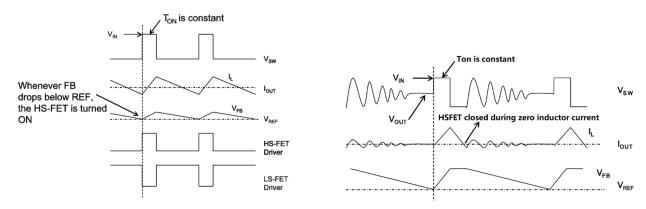


Figure 2 FPWM Operation

Figure 3 PFM Operation

The GD30DC1902 can be configured to work in either FPWM mode or PFM mode, as is shown in above Figure 2 and Figure 3.

In FPWM mode, the switching frequency remains stable as the load current varies. This helps reduce output voltage (V_{OUT}) ripple under light loads and simplifies the design of second-stage filters for damping power stage noise. However, because the internal power MOSFETs switch on and off more frequently, light-load efficiency is lower compared to PFM mode.

In PFM mode under light-load conditions, the V_{FB} cannot reach the V_{REF} while the inductor current approaches zero. The current modulator then takes over, keeping the inductor current near zero. During this time, the LS-FET driver enters a high-impedance (Hi-z) state, resulting in a slow output voltage drop. Consequently, the GD30DC1902 naturally reduces its switching frequency, achieving higher efficiency. However, as a trade-off, PFM mode experiences greater output voltage ripple.

For detailed setup methods regarding the operating mode and switching frequency of the GD30DC1902, refer to the section *Operation mode and frequency selection*.

6.2.3 Heavy Load operation

For FPWM mode, the operating mechanism is the same as that in light load condition.

For PFM mode, As the output current rises from a light-load state, the regulation period of the current modulator becomes shorter. The HS-FET is activated more frequently, leading to an increase in the switching frequency. When the modulation time reduces to zero, the output current reaches the critical level. The critical output current can be calculated using the Equation(1):

$$I_{OUT_Critical} = \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{2 \times L \times f_{SW} \times V_{IN}}$$
(1)

The device enters PWM mode once the output current exceeds the critical level. Afterward, the switching frequency remains fairly constant over the output current range.

6.2.4 Enable (EN) Control

The GD30DC1902 includes a dedicated enable control pin with positive logic. To activate the regulator, apply a voltage above 1.2V (typical) to the EN pin, and to disable it, set the EN pin voltage below 1V (typical). By using two external resistor dividers, it is easy to optimize the start and stop voltage of the system via EN pin. It recommend to use less than $30K\Omega$ resistor for R_{ENDN} .

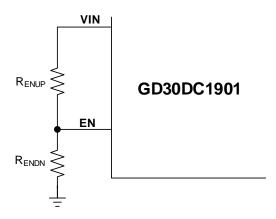


Figure 4 EN divider for adjustable UVLO

Start voltage setting:

$$V_{\text{START}} = 1.2 \times \frac{R_{\text{ENUP}} + R_{\text{ENDN}}}{R_{\text{ENDN}}} - 4uA \times R_{\text{ENUP}}$$
(2)

Stop voltage setting:

$$V_{STOP} = 1 \times \frac{R_{ENUP} + R_{ENDN}}{R_{ENDN}} - 4uA \times R_{ENUP}$$
(3)

6.2.5 Under-Voltage Lockout (UVLO)

The under-voltage lockout (UVLO) feature ensures the chip does not operate at inadequate supply voltages. The GD30DC1902 UVLO comparator monitors the input voltage, with a rising threshold of approximately 4.3V and a falling threshold of 4V.

6.2.6 Internal Soft Start (SS)

The soft-start (SS) function prevents output voltage overshoot during start-up. When the chip powers on, the internal circuit generates a soft-start voltage (V_{SS}) that gradually increases from 0V to 1V. While V_{SS} remains below V_{REF} , V_{SS} replaces V_{REF} as the reference for the error amplifier. Once V_{SS} surpasses V_{REF} , the error amplifier switches back to using V_{REF} . The soft-start duration is internally set to 2ms.

6.2.7 Operation mode and frequency selection

The GD30DC1902 provides both FPWM and PFM in light-load condition. The FM PIN can determine the switching frequency too. GD30DC1902 has four options for switching frequency and operation mode selection via choosing different value resistors between FM and GND. Refer below for detail.

Table 1 Switchir	g frequency set	t resistor selection
------------------	-----------------	----------------------

SET	Operation Mode	Switching Frequency
SET Pin short to GND	FPWM	300kHz
RSET = 18.7kΩ	FPWM	500kHz
RSET = 37.4kΩ	FPWM	800kHz
RSET = 75kΩ	PFM	300kHz
RSET = 150kΩ	PFM	500kHz
SET Pin Float	PFM	800kHz

6.2.8 Over-Current Protection (OCP) and Short Circuit Protection (SCP)

The GD30DC1902 incorporates both peak current limit and valley current limit controls. During HS-FET operation, its current is monitored, and the HS-FET turns off upon reaching the peak current limit, enabling the LS-FET valley current limit control. The LS-FET remains active until its current falls below the valley limit. Once OCP occurs, the output voltage will drop down at the same time, which will cause VFB dropping down correspondingly, either 'VFB below FB UVP threshold(typically 140mV)' or 'OCP is occurred' happen, the device will start to timing typically 10ms deglitch time, if any of the above two conditions still exists, the device will enters GD30DC1902 will enter hiccup mode, until both of the conditions are removed, then the GD30DC1902 will back to normally switching again.

6.2.9 Power Good Indication

The GD30DC1902 uses a power-good (PG) output to indicate whether the output voltage of the buck regulator ready or not. The PG pin is an open drain output. Once the FB pin is between 87% and 112% of the internal voltage reference the PG pin is de-asserted and the pin floats. A pull-up resistor of $10 \text{ k}\Omega$ to $100\text{k}\Omega$ to a voltage source that is 5.5 V or less is recommended. A higher pull-up resistance reduces the amount of current drawn from the pull-up voltage source when the PG pin is asserted low. A lower pull-up resistance reduces the switching noise seen on the PG signal. The PG is in a defined state once the input voltage is greater than 2 V but with reduced current sinking capability. The PG will achieve full current sinking capability as input voltage approaches 3 V. The PG pin is pulled low when the FB is lower than 87% or greater than 112% of the nominal internal reference voltage. Also, PG is pulled low, if UVLO or thermal shutdown are asserted or the EN pin pulled low.

6.2.10 Thermal Shutdown

The GD30DC1901 includes thermal shutdown protection, with its junction temperature monitored internally. If the temperature exceeds the threshold (typically 140°C), the converter shuts down. This protection is non-latching, allowing the GD30DC1901 to automatically restart once the temperature decreases.

7 Application Information

7.1 Typical Application Circuit

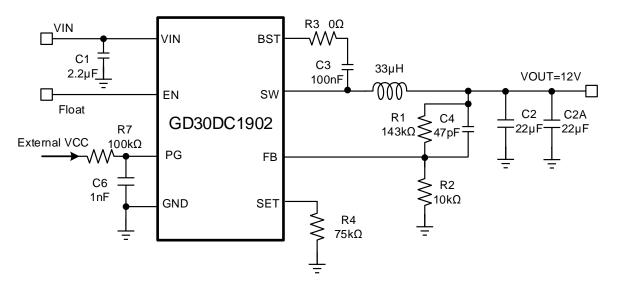


Figure 5 VIN=48V, VOUT=12V, IOUT=2A, FSW=300KHz, PFM MODE

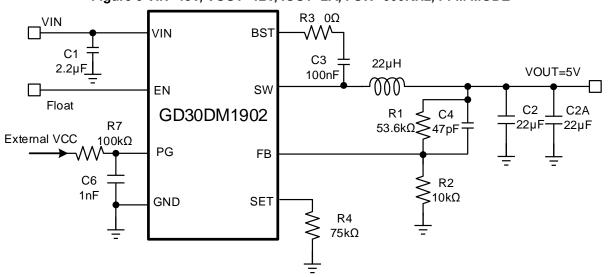


Figure 6 VIN=48V, VOUT=5V, IOUT=2A, FSW=300KHz, PFM MODE

7.2 Detailed Design Description

7.2.1 Setting the Output Voltage

The GD30DC1902 output voltage can be set by the external resistor dividers. The reference voltage is fixed at 0.78V. The feedback network is shown in Figure 7.

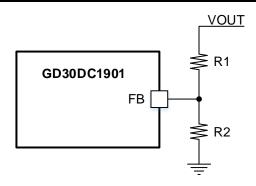


Figure 7 Feedback Network

Choose R1 and R2 using Equation:

$$V_{OUT2} = \frac{(V_{OUT1} + V_F) \times N_S}{N_P}$$
 (4)

7.2.2 Selecting the Inductor

An inductor is essential for providing continuous current to the load while being driven by the switched input voltage. A larger inductor minimizes ripple current and reduces output voltage ripple but comes with drawbacks such as a larger physical size, higher series resistance, and lower saturation current. For most designs, the suitable inductance value can be calculated using the following Equation(5):

$$L = \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN} \times F_{SW} \times \Delta I_{I}}$$
 (5)

Where ΔIL is the inductor ripple current.

Table 2 lists the recommended feedback resistor values for common output voltages (Fsw=300kHz).

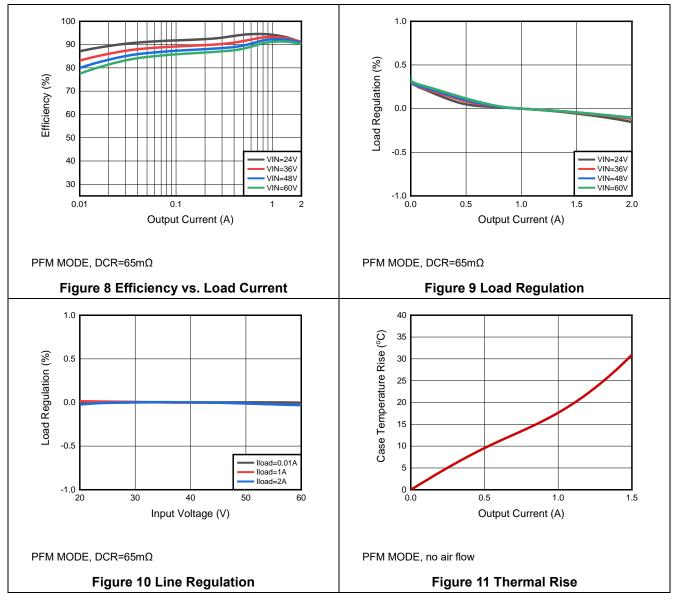
Table 2 Resistor Selection for Common Output Voltages¹

VOUT(V)	R1(kΩ)	R2(kΩ)	Cff(pF)	L(µH)	COUT(µF)
12	143	10	47	33	2*22
5	53.6	10	47	22	2*22

^{1.} For a detailed design circuit, please refer to the Typical Application Circuits.

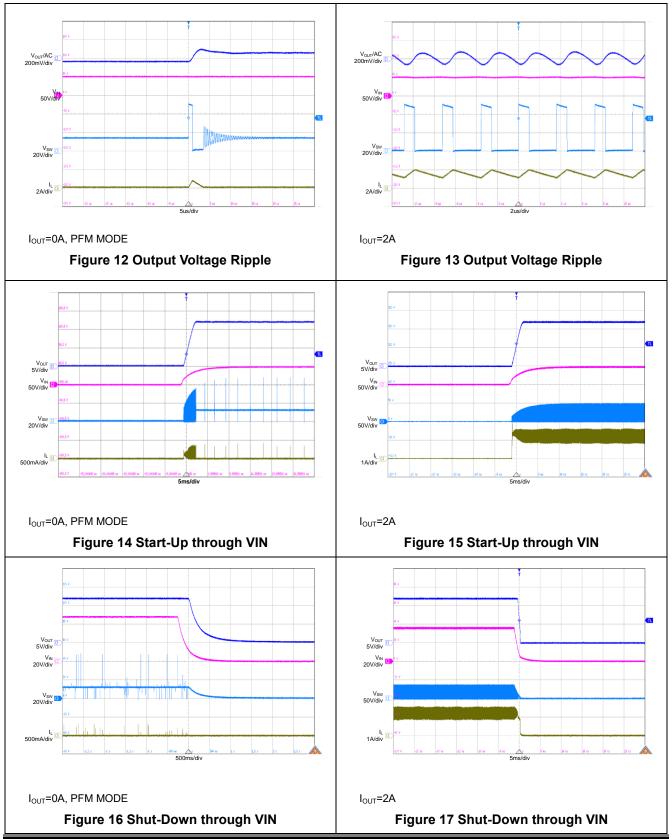
7.2.3 Selecting the Output Capacitor

The output capacitor maintains the DC output voltage ripple. Use ceramic, tantalum, or low-ESR electrolytic capacitors. For best results, use low ESR capacitors to keep the output voltage ripple low. The output voltage ripple can be estimated with Equation(6):

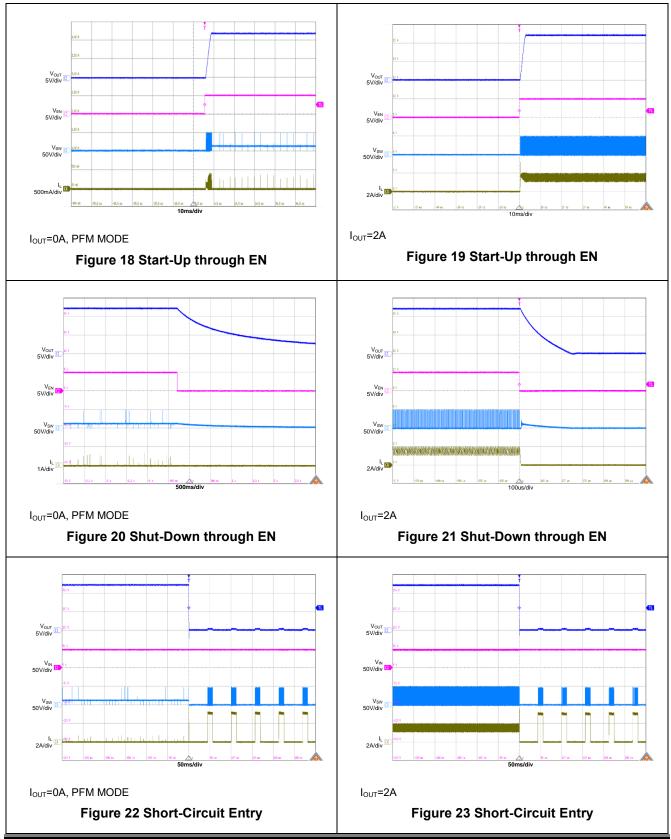

$$\Delta V_{\text{OUT1}} = \frac{I_{\text{OUT2}} \times V_{\text{OUT1}} \times N_{\text{S}}}{f_{\text{SW}} \times C_{\text{OUT1}} \times V_{\text{IN}} \times N_{\text{P}}}$$
(6)

Where L is the inductor value, and R_{ESR} is the equivalent series resistance (ESR) value of the output capacitor. The characteristics of the output capacitor also affect the stability of the regulation system. The GD30DC1902 can be optimized for a wide range of capacitance and ESR values.

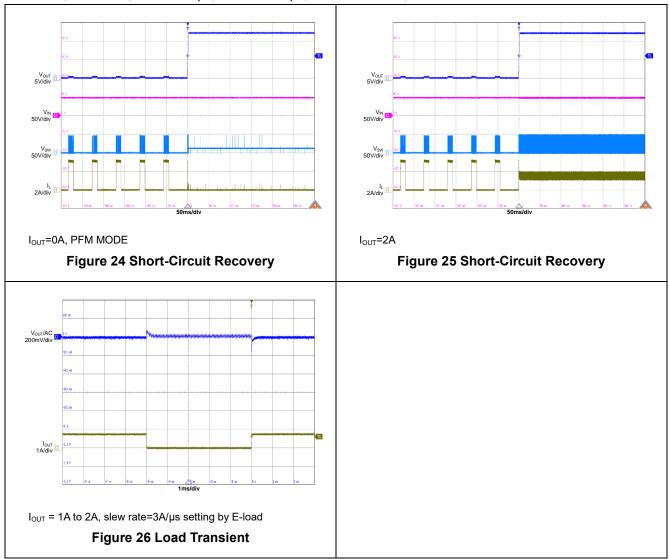
7.3 Typical Application Curves


 V_{IN} = 48V, V_{OUT} = 12V, C_{IN} = 2.2 μ F, C_{OUT} = 2x22 μ F, L1 = 33 μ H, F_{SW} =300kHz, and T_A = +25 $^{\circ}$ C, unless otherwise noted.

Typical Application Curves (continued)

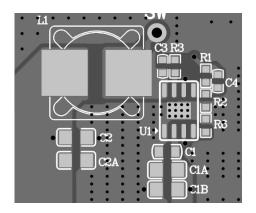

 V_{IN} = 48V, V_{OUT} = 12V, C_{IN} = 2.2 μ F, C_{OUT} = 2x22 μ F, L1 = 33 μ H, F_{SW} =300kHz, PG external pulled up to 5V, and T_A = +25°C, unless otherwise noted.

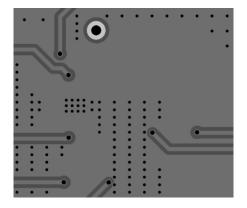
Typical Application Curves (continued)


 V_{IN} = 48V, V_{OUT} = 12V, C_{IN} = 2.2 μ F, C_{OUT} = 2x22 μ F, L1 = 33 μ H, F_{SW} =300kHz, PG external pulled up to 5V, and T_A = +25°C, unless otherwise noted.

Typical Application Curves (continued)

 V_{IN} = 3.3V, V_{OUT} = 1V, C_{IN} = 2*22 μ F, C_{OUT} = 4*22 μ F, and T_A = +25°C, unless otherwise noted.




8 Layout Guidelines and Example

Efficient layout of the switching power supplies is critical for stable operation. For the high frequency switching converter, poor layout design may cause poor line or load regulation and stable issues. For best results, refer to below figure and follow the guidelines below.

- 1) Place the input capacitor as close to VIN and GND as possible.
- 2) Place the external feedback resistors as close to FB as possible.
- 3) Keep the switching node (such as SW, BST) far away from the feedback network. Ensure BST and SW trace as short as possible.
- 4) Add a grid of thermal vias under the exposed pad to improve thermal conductivity.

For best results, follow the layout example below.

Top Layer

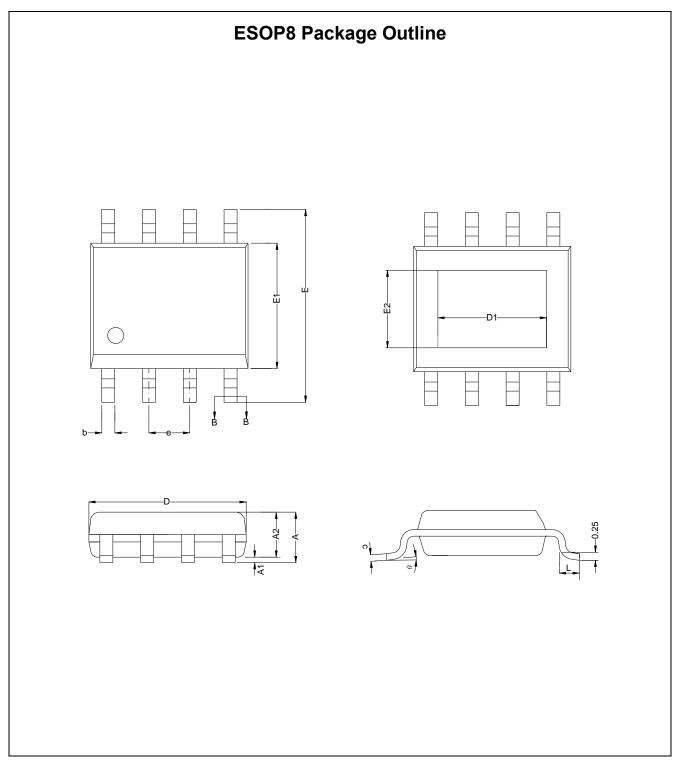

Bottom Layer

Figure 27 Typical GD30DM1106 Example Layout

9 Package Information

9.1 Outline Dimensions

NOTES:

- 1. All dimensions are in millimeters.
- 2. Package dimensions does not include mold flash, protrusions, or gate burrs.
- 3. Refer to the Table 3 ESOP8 dimensions(mm).

Table 3. ESOP8 dimensions(mm)

SYMBOL	MIN	NOM	MAX
А			1.65
A1	0.05		0.15
A2	1.30		1.70
b	0.33		0.51
С	0.19		0.25
D	4.80	4.90	5.00
D1	3.15		3.45
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
E2	2.26		2.56
е		1.27	
e1		0.10	
L	0.50	0.60	0.80
θ	0°		8°

10 Ordering Information

Ordering Code	Package Type	ECO Plan	Packing Type	MOQ	OP Temp(°C)
GD30DC1902WGTR-I	ESOP8	Green	Tape & Reel	3000	-40°C to +125°C

11 Revision History

REVISION NUMBER	DESCRIPTION	DATE
1.0	Initial release and device details	2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product, the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advancedlighting, etc.. Automobile herein means a vehicle propelled by a self-contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 GigaDevice - All rights reserved